IPeut - écrits et documents
ManagementMarketingEconomieDroit
ss
Accueil # Contacter IPEUT




economie générale icon

ECONOMIE

L’économie, ou l’activité économique (du grec ancien οἰκονομία / oikonomía : « administration d'un foyer », créé à partir de οἶκος / oîkos : « maison », dans le sens de patrimoine et νόμος / nómos : « loi, coutume ») est l'activité humaine qui consiste en la production, la distribution, l'échange et la consommation de biens et de services. L'économie au sens moderne du terme commence à s'imposer à partir des mercantilistes et développe à partir d'Adam Smith un important corpus analytique qui est généralement scindé en deux grandes branches : la microéconomie ou étude des comportements individuels et la macroéconomie qui émerge dans l'entre-deux-guerres. De nos jours l'économie applique ce corpus à l'analyse et à la gestion de nombreuses organisations humaines (puissance publique, entreprises privées, coopératives etc.) et de certains domaines : international, finance, développement des pays, environnement, marché du travail, culture, agriculture, etc.


NAVIGATION RAPIDE : » Index » ECONOMIE » economie générale

Rationalité des choix : perspectives et origines de la théorie de la decision

Faire un choix rationnel ! Beaucoup de décideurs le souhaitent et y travaillent. Dans les problèmes d'investissement, d'écologie, de sécurité routière et, plus généralement, dans les problèmes de choix industriels ou politiques dont les conséquences concernent la société, le choix final voudrait être fondé sur des arguments à caractère scientifique : il voudrait être rationnel.
La théorie de la décision se fonde sur un ensemble de descriptions des problèmes de décision à partir desquelles des analyses cohérentes peuvent être menées ; elle propose des principes sur lesquels des critères de sélection sont construits et des solutions seront proposées. La théorie donne donc les moyens aux décideurs non seulement d'analyser leurs problèmes, mais aussi de pouvoir justifier les solutions proposées : elles sont rationnelles. La description des problèmes de décision utilise le « langage » mathématique parce que c'est un langage universel, d'une part, et. d'autre part, parce qu'il permet d'utiliser de puissants outils d'analyse. Cela ne veut pas dire que le champ d'application soit strictement limité à des problèmes quantitatifs, la mathématique ne ramène pas tout aux nombres ! Il est certain toutefois que, dans la pratique, les décisions proposées par la théorie seront généralement quantifiées.
Les décisions économiques, qui sont par nature quantifiées, seront naturellement fondées sur une analyse et sur des méthodes quantitatives. La difficulté rencontrée dès l'abord ent de ce que certains éléments de l'enronnement économique ne sont pas tous aisément quantifiables : les impondérables météorologiques (qui influent sur les récoltes), les contextes géopolitiques (blocus, guerres) et surtout les comportements des différents acteurs économiques. Cela ne doit pas nécessairement faire abandonner l'approche quantitative sous le prétexte que toute quantification serait réductrice et partiellement arbitraire. Un des objets de la méorie de la décision est de donner les moyens de construire des descriptions quantifiées des problèmes, ainsi que des critères, qui permettent d'y apporter des solutions. Bien entendu, le calcul du prix de vente d'un robot ménager, à partir des coûts de production et d'une estimation de la demande de ce produit, se prête mieux à une élude quantitative que le choix d'un nouveau directeur commercial. Cependant, avec un degré approprié de formalisme, en restant conscient des limites de validité des critères, en examinant de manière critique les solutions proposées, il est souvent profile d'utiliser les méthodes développées par la théorie de la décision, avant d'arrêter le choix final.

1. Quelles théories de la décision ?

Ou encore, la théorie de quelles décisions ? Le besoin de rationaliser les choix se fait sentir aussi bien pour les gestionnaires qui traitent de problèmes complexes, mais sans incertitude, que pour ceux, les actuaires et les financiers notamment, dont le souci principal ent de l'incertitude sur les conséquences de leurs choix. Doit-on traiter séparément chaque type de problème et lui proposer une théorie adaptée ? La théorie de la décision se construit de manière à pouvoir intégrer différents types d'incertitude, et nous aurons donc une théorie qui pourra s'appliquer à des problèmes de décision qui se posent à des agents situés dans des enronnements de natures variées. Mais outre les utilisateurs directs des recommandations d'une théorie, la rationalisation des choix est un élément essentiel à la construction de nouvelles théories qui mettent en jeu des décideurs, dans les sciences de l'homme et de la société. La théorie économique est construite sur la description du comportement d'agents (consommateurs, producteurs) ; les modèles de la gestion doivent faire des hypothèses sur la représentation des objectifs à atteindre. Les situations suivantes font appel à la théorie de la décision ; elles aideront à en clarifier les différents aspects.
• Les choix économiques dans les entreprises, publiques et privées, ont commencé à être traités de manière systématiquement scientifique dans les années cinquante. Le calcul économique s'adresse en particulier aux problèmes de choix de facteurs de production en fonction de leurs coûts, de choix de prix de vente d'un produit, d'évaluation des salaires, etc. ' Il a pu voir le jour grace au développement de la théorie économique qui fournit un cadre approprié à la formalisation des problèmes, aux méthodes économétriques permettant de traiter les données et aux résultats de la « recherche opérationnelle » proposant des méthodes mathématiques de résolution.
• L'analyse des risques est une étape nécessaire du traitement de certains problèmes de décision. Les problèmes d'assurance et de choix de portefeuille appartiennent à des domaines où l'incertitude est l'objet principal des préoccupations des décideurs. Lorsque l'on veut assurer un bien contre un risque de destruction, deux éléments fondamentaux sont à estimer : la valeur du bien ou son coût de remplacement, d'une part, l'importance et la vraisemblance des événements qui présentent des risques, d'autre part. De même, pour décider de la formation d'un portefeuille, les rendements des actifs, mais aussi les variabilités de ces rendements, doivent être pris en compte.
C'est l'objet principal de la théorie de la décision indiduelle que de proposer un cadre d'étude du comportement rationnel face à l'incertitude. En distinguant différents types d'incertitudes, des théories adaptées sont proposées pour représenter les comportements de décideurs qui vérifient certaines conditions. La théorie la plus achevée concerne les situations où l'incertitude porte sur des variables dont la distribution de probabilité est connue : une comnie d'assurances a estimé que la probabilité de destruction d'une automobile durant l'année à venir est de 5 % ; le taux de rendement moyen d'un actif financier est estimé à 9 % avec une variabilité (mesurée par l'écart moyen autour de 9 %) de 15. Ces estimations sont faites sur la base d'observations des variables passées, éventuellement corrigées par des informations concernant le futur.
C'est à ce type d'incertitude qu'est généralement réservé le terme de situations de risque. La théorie qui a dominé les études de risques, depuis son apparition en 1944, est la théorie de l'utilité espérée (chapitre v). Elle a permis de définir un certain nombre de mesures du risque qui ont ser tant en théorie de l'assurance qu'en économie de l'incertain en général. Mais elle présente de graves limites qui ont conduit à chercher d'autres théories dont l'émergence date des années quatre-ngt et qui n'ont pas encore trouvé toutes les applications que l'on peut en attendre.
Les théories du risque s'étendent à certaines situations où l'incertitude n'est pas probabilisée et où l'estimation des risques doit garder un caractère subjectif. C'est le cas de problèmes d'investissement dans une actité mal connue, de recherche de minerais dans une région non prospectée, et, d'une manière générale, de paris sur une variable aléatoire dont les réalisations ne peuvent pas être observées (comme les paris sportifs, par opposition aux loteries).
Les problèmes d'assurance font aussi intervenir, au point de vue indiduel, un risque relatif aux comportements des assurés : l'assureur prend en compte la fréquence des accidents passés, mais il doit aussi prendre en compte le comportement (les précautions, les actités) de l'assuré. Ce dernier peut fort bien prendre beaucoup moins de précaution s'il est assuré que s'il ne l'était pas (ce problème est connu sous le nom de « risque moral »). Il peut aussi prétendre à un contrat qui ne correspond pas au type de risque que son actité lui fait courir (ce problème est connu sous le nom d'antisélection2). Dans tous les cas, du fait qu'il y a plusieurs parties dans un contrat, un élément de l'incertitude concernant chacune des parties proent du comportement des autres.
• L'étude des situations de conflit d'intérêts fut, on s'en doute au vu de son origine militaire, un des moteurs de la recherche opérationnelle. C'est l'objet de la théorie des jeux, qui doit son nom au fait que les jeux de société sont des microcosmes de situations de conflit réelles : les échecs, la guerre (féodale !) ; le Monopoly, l'investissement immobilier ; le bridge, la communication, le choix de stratégies et le combat. Avec ou sans coopération, en connaissance complète ou non des autres joueurs et de leurs objectifs, avec ou sans incertitude sur l'enronnement du jeu, la théorie des jeux a formalisé un grand nombre de situations de conflit et s'est efforcée d'y apporter des solutions. Ses applications en théorie de l'assurance et de la concurrence sont les plus connues, mais ses apports sont importants aussi dans l'analyse des équilibres économiques et dans la formalisation de situations politiques et sociales (organisation industrielle, jeux de vote, négociations syndicales). L'approche de la théorie des jeux diffère de celle de la théorie de la décision indiduelle puisque son objet est de proposer des solutions à des problèmes où plusieurs décideurs interennent. La théorie des jeux propose un ensemble de méthodes d'analyse et de concepts de solution pour lesquels chacun des joueurs tient compte de la réaction des autres joueurs à sa décision. Ces analyses utilisent la théorie de l'utilité espérée pour représenter le comportement des joueurs face aux risques, quand ceux-ci proennent de mécanismes aléatoires. En revanche, l'incertitude à laquelle fait face chaque joueur quant aux décisions des autres joueurs n'est pas représentée comme une variable aléatoire. Chacun des joueurs, se mettant à la place de ses opposants, peut chercher à trouver une décision pour chacun qui soit telle qu'aucun ne puisse indiduellement mieux faire si les autres ne déent pas. Ce type de raisonnement ne peut se faire que sur la base d'une description du jeu qui soit une connaissance commune de tous les joueurs ; il suppose de plus que chacun des joueurs raisonne de la même manière et adopte un comportement rationnel.
La théorie de la décision regroupe donc un ensemble de méthodes d'analyse et de résolution de problèmes de décision. Cet ensemble peut parfois paraitre hétéroclite du fait que les méthodes dépendent de l'enronnement des problèmes traités. Ce qui en fait une méorie, c'est que ces différentes méthodes sont construites en utilisant la mathématique, non seulement pour son langage et sa logique, mais aussi pour sa construction : partant d'éléments de base (les décisions possibles, les préférences), des axiomes sont proposés (sur le comportement des décideurs) à partir desquels la théorie est construite.
Bien que la théorie de la décision ait les mêmes origines que la représentation de l'incertitude, cette dernière a connu une formalisation plus universelle qui a donné lieu à la formation d'une théorie purement mathématique : la théorie des probabilités.

2. Aperçu historique de la représentation de l'incertitude

Le fait que les conséquences de nos actes ne dépendent pas uniquement de nos décisions a dû s'imposer très tôt à la conscience humaine. Avant toute analyse scientifique des phénomènes, les facteurs qui échappent au contrôle des décideurs ont été attribués à la volonté d'entités anthropomorphes : les dieux et les démons. Les langages magico-religieux peuvent être considérés comme les premières représentations de l'incertitude. Au fur et à mesure de l'avancée des analyses scientifiques, le rôle de la formalisation démonologique a reculé devant les théories et d'autres types de formalismes. L'invention des premiers jeux de société et leurs raffinements ont sans doute permis de distinguer le rôle de l'adresse, de la réflexion, des interactions entre les joueurs, et, enfin, d'isoler le rôle de variables qui ne sont contrôlées par aucun des joueurs. Ainsi, les jeux d'échecs, de dames ou le go ne laissent d'incertitude que quant à la stratégie choisie par l'autre joueur. En revanche, dans les jeux utilisant des dés ou des sectiunes, l'incertitude porte aussi sur des numéros ou des ures tirés au hasard. Les loteries, lotos ou jeux de roulette des casinos sont des jeux où les conséquences des choix (paris) des joueurs ne dépendent que des résultats du mécanisme utilisé, résultat qui est supposé ne pas être manipulé.
L'étude des jeux de société, considérés comme des formalisations de situations de décisions réelles, a été le point de départ (xr et xvnr siècles) de la théorie de la décision, ainsi que celui d'une formalisation mathématique de l'incertitude, qui devait devenir la théorie des probabilités. Le vérile développement de cette théorie mathématique devait venir, au XIX' siècle, des recherches en physique, d'une part, et de l'étude des statistiques sociales et économiques, d'autre part. La théorie des probabilités est désormais une branche de la mathématique ; la statistique mathématique en est un développement dans lequel les techniques statistiques trouvent leurs fondements. Aussi, autant que faire se peut, la théorie de la décision, telle qu'elle est apparue dans les années cinquante, se réfère à ces théories en utilisant leur formalisation de l'incertitude. Un petit exemple classique en théorie des probabilités peut aider à comprendre comment cette théorie et son formalisme peuvent aider à prendre des décisions.
Supposons que vous soyez dans une salle avec un certain nombre de personnes et qu'un indidu vous aborde et parie avec vous cent euros qu'il y a dans cette salle au moins deux personnes ayant la même date d'anniversaire. Une fois sûr que l'indidu ne connait pas plus que vous les personnes présentes, tiendrez-vous le pari ? Cela dépend, bien sûr, du nombre de personnes dans la salle ; on ne doute pas qu'il y ait plus de chance de trouver deux personnes ayant la même date d'anniversaire parmi cent personnes que parmi cinq. Le calcul des probabilités permet de calculer précisément que la probabilité de trouver deux personnes ayant la même date d'anniversaire est de 0,0027 s'il y a deux personnes présentes ; de 0,11. si le nombre de personnes est 10 ; de 0,42, s'il y a 20 personnes ; de 0,50 (le pari est donc équivalent dans ce cas à un jeu de pile ou face !) si le nombre de personnes est 23 ; de 0,97, s'il y a 50 personnes (vous êtes quasiment sûr de perdre !).
Mais le fait qu'une théorie mathématique existe ne signifie pas que toutes les situations d'incertitude puissent s'exprimer selon le formalisme probabiliste En outre, pour chaque problème de décision, restent les difficultés d'interprétation du formalisme qui représente l'incertitude telle qu'elle est perçue par le décideur.
C'est en concurrence avec l'élaboration de théories économiques qu'ont été posés de nombreux problèmes d'interprétation de l'incertitude dans les problèmes de décision. En particulier, John Keynes [1921] a favorisé une interprétation selon laquelle toutes les probabilités sont conditionnelles et définies par des relations ordinales entre les événements. Ramsey [1931], puis De Finetti [1930] et Savage [1954], en critiquant le point de vue fréquentiste (les probabilités des événements sont les fréquences de leurs apparitions dans une expérience aléatoire répétée), ont considéré les lois de probabilités comme des représentations des jugements des décideurs sur la confiance qu'ils accordent à la réalisation des événements. Une telle interprétation conduit à une notion de probabilités subjectives qui ne sont définies que dans le contexte de problèmes de décisions indiduels. Les deux notions, fréquentistes et sub-jectistes, peuvent cependant être juxtaposées (Anscombe, Aumann [1963]) : les probabilités «objectives» des événements d'une expérience aléatoire (loterie) pouvant être utilisées pour étalonner les probabilités « subjectives » d'événements dont l'apparition ne peut, ou n'a pas pu, être observée.


3. Les fondateurs de la théorie de la décision


En 1957, parait un ouvrage qui reste à ce jour une très bonne référence des théoriciens de la décision : Games and Décisions (Jeux et décisions) de Luce et Raiffa [1957]. Le point y est fait sur l'état de l'art à cette époque et de nombreuses suggestions sur des extensions et des applications possibles y sont proposées. Si, comme nous le verrons dans le paragraphe suivant, la théorie de la décision s'est largement développée depuis, c'est sur les résultats présentés dans cet ouvrage que se sont appuyés à la fois et la plupart des recherches en économie de l'incertain, et la plupart des méthodes d'aide à la décision.
Comme l'indique le titre de l'ouvrage de Luce et Raiffa, il s'agit tout d'abord de présenter les résultats fondamentaux de la théorie des jeux alors toute récente, puisqu'elle a vu le jour sous sa forme moderne durant la Seconde Guerre mondiale (ses concepts de solution des problèmes de décision en situations de conflit devaient leur importance à l'actualité militaire). Mais la théorie des jeux elle-même requérait une théorie de la représentation du comportement indiduel : c'est la diéorie de l'utilité espérée proposée par von Neumann et Morgenstern [1944]. La notion d'utilité espérée (chapitre v) avait été proposée dès le xii siècle par Daniel Bemoulli ; elle n'avait pas été beaucoup exploitée depuis lors, essentiellement parce que les modèles économiques se limitaient au cadre de décisions sans incertitude. Elle n'était cependant pas étrangère à certains économistes qui utilisèrent la notion de fonction d'utilité des conséquences (au lieu de er les conséquences elles-mêmes) ainsi que la propriété de cette fonction d'être marginalement décroissante : la satisfaction s'accroit moins en ajoutant un euro à mille euros, qu'en ajoutant un euro à dix euros.
Parallèlement à la formalisation de la théorie des jeux, un certain nombre de techniques mathématiques (programmation linéaire et, plus généralement, techniques d'optimisation de critères) ont permis à la théorie de la décision d'être appliquée avec succès. Par ailleurs, la statistique, en devenant une théorie mathématique qui s'appuyait sur la théorie des probabilités, cherchait à faire reposer ses méthodes d'inférence sur une théorie : la décision statistique (chapitre vu). Ce furent Wald [1950], puis Savage [1954] qui firent le lien entre les fondements de la statistique, des probabilités et des décisions.
Historiquement, ces théories sont intimement liées. C'est au xi siècle, puis au xii siècle que les philosophes-mathématiciens se penchèrent sur les problèmes posés par les jeux de hasard. Le chevalier de Méré (1607-l684). philosophe, homme de lettres et joueur invétéré, fut un des premiers à poser des problèmes de décision en termes scientifiques et à chercher à les résoudre dans le cadre simple des jeux de hasard. Un de ces problèmes consistait à faire parier contre l'apparition d'au moins un six en jetant quatre dés. Le chevalier de Méré réussit à calculer que sa probabilité de gagner au jeu précédent (la probabilité qu'apparaisse au moins un six) était légèrement supérieure à 1/2, ce qui lui donnait, en y jouant souvent, un avantage suffisant pour gagner à long terme sans que ses partenaires ne réalisent que le jeu leur était défavorable. C'est sur le même principe que sont construits les jeux proposés dans les casinos qui, toui en laissant aux joueurs une probabilité assez importante de gagner, assurent, à long terme, un revenu certain à la direction.
Le chevalier de Méré se posait des problèmes de décision d'une manière qui exprimait le besoin d'une théorie. Ainsi le problème des partis (on dirait aujourd'hui partages) résolu par Pascal : on considère un jeu de pile ou face, répété, à deux joueurs, où le premier joueur à avoir gagné N fois (N est un nombre fixé avant que la partie commence) ramasse la totalité de la mise initiale. Le problème est alors le suivant : supposons que le jeu soit interrompu et qu'il manque m parties pour que le joueur A gagne et n parties pour que le joueur B gagne, comment répartir la mise équilement ?
La solution proposée par Pascal suppose que le partage est équile si les sommes perçues par chacun des joueurs sont proportionnelles à leurs chances de gagner. Ce critère est l'« espérance du gain » ; il avait été défini par Huygens dans son essai. De la logique du jeu de dés, en 1637, avec l'interprétation du « juste prix auquel un joueur accepterait de céder sa place dans une partie ». L'utilisation de ce critère nécessitait de savoir calculer les « chances » ; ce furent les premiers calculs de probabilités. Problèmes de décision, jeux et calcul des probabilités restèrent très liés au siècle suivant : Montmort, Essai d'analyse sur les jeux de hasard (1708) ; de Moivre, La Doctrine des chances (1730) ; Jacques Bernoulli, L'Art de la conjecture (1713), qui trouva la première loi des grands nombres, et son neveu Daniel. Exposé d'une théorie nouvelle de l'évaluation du risque (1738). Daniel Bernoulli peut être considéré comme le père de la théorie de la décision moderne puisqu'il fut le premier à proposer le critère de l'« espérance de l'utilité du gain ». sur lequel nous reendrons en détail au chapitre V. Mais pour se développer plus avant, l'analyse des problèmes de décision avait besoin de mathématiques qui restaient à découvrir. La théorie des probabilités fut développée par Poisson (qui découvrit aussi une loi des grands nombres en 1837 et imposa ce terme), puis par Laplace (Théorie analytique des probabilités, 1812) et Gauss (Théorie de la combinaison d'erreurs de faibles amplitudes, 1821) qui découvrirent la fameuse loi de Laplace-Gauss, aussi appelée loi normale. Il fallut tout un siècle pour généraliser les lois des grands nombres, et pour cela le développement des théories de l'intégrale (Riemann en 1867, Lebesgue en 1901. pour les plus connues).
La théorie des probabilités prit sa forme achevée en 1933 (Kolmogorov. pour un fondement analytique, mais von Mises avait proposé un fondement statistique en 1919). Elle continue de se développer, mais dès cette époque ses applications aux statistiques (qui devaient aussi former une théorie mathématique), à la théorie des jeux et à la théorie de la décision allaient devenir la norme.


4. Les théories et les perspectives


La théorie de la décision indiduelle est l'objet de notre présentation. Elle consiste, dans le cadre d'une description adéquate des différents éléments des problèmes de décision, à construire des critères fondés sur des hypothèses sur le comportement du décideur. Dans le cadre de ces hypothèses, le comportement rationnel consiste à optimiser ces critères. La théorie de la décision s'inscrit ainsi dans la perspective de la théorie économique qui met en jeu des agents, consommateurs et producteurs, et en formalise le comportement comme consistant à maximiser des « fonctions d'utilité » ou « fonctions de satisfaction » (nous simplifions, la théorie n'a souvent besoin que de « préférences » — chapitre 111 — sans que celles-ci doivent être représentées par une fonction). L'agent économique est alors réduit au fameux Homo economicus qui peut faire sourire, mais qui a permis d'importantes avancées dans le domaine de la compréhension des prix d'équilibre.
Dans des domaines plus spécialisés de l'économie : marchés financiers, contrats d'assurance et, plus généralement, ceux traitant de l'analyse des risques, la théorie de la décision a permis de proposer des solutions normatives, en s'appuyant notamment sur le critère de l'utilité espérée.
Dans les applications, ces théories requièrent le traitement de données, ce qui relève de la statistique. Mais ce traitement nécessite aussi des prises de décisions et l'inférence statistique se réfère aussi à la théorie de la décision.
L'étude de la plupart des décisions économiques ne peut se traiter sur la seule base du comportement indiduel puisque les interactions entre les agents entrent en jeu. Des agents rationnels doivent donc être décrits en tenant compte du fait qu'ils sont conscients de ces interactions entre leurs objectifs et ceux des autres agents. Les développements récents de la théorie économique, la théorie de l'organisation industrielle notamment, font donc une large place à la théorie des jeux dont l'objet est l'étude des interactions des différents joueurs. Nous n'en traitons pas ici, faute de place, nous contentant d'exposer les différents éléments des problèmes de décision qui nous permettront de donner un sens précis à la notion de rationalité indiduelle.



Privacy - Conditions d'utilisation




Copyright © 2011- 2024 : IPeut.com - Tous droits réservés.
Toute reproduction partielle ou complète des documents publiés sur ce site est interdite. Contacter